Show simple item record

Depositordc.contributorHulme, Alison
Funderdc.contributor.otherBBSRC - Biotechnology and Biological Sciences Research Councilen_UK
Funderdc.contributor.otherCRUK - Cancer Research UKen_UK
Funderdc.contributor.otherERC - European Research Councilen_UK
Funderdc.contributor.otherMRC - Medical Research Councilen_UK
Data Creatordc.creatorTipping, William J
Data Creatordc.creatorLee, Martin
Data Creatordc.creatorBrunton, Valerie G
Data Creatordc.creatorLloyd-Jones, Guy J
Data Creatordc.creatorHulme, Alison N
Date Accessioneddc.date.accessioned2019-06-19T11:26:11Z
Date Availabledc.date.available2019-06-19T11:26:11Z
Citationdc.identifier.citationTipping, William J; Lee, Martin; Brunton, Valerie G; Lloyd-Jones, Guy J; Hulme, Alison N. (2019). Kinetic analysis of bioorthogonal reaction mechanisms using Raman microscopy, [dataset]. University of Edinburgh. School of Chemistry. Hulme Research Group. https://doi.org/10.7488/ds/2576.en
Persistent Identifierdc.identifier.urihttp://hdl.handle.net/10283/3360
Persistent Identifierdc.identifier.urihttps://doi.org/10.7488/ds/2576
Dataset Description (abstract)dc.description.abstractRaman spectroscopy is well-suited for the study of bioorthogonal reaction processes because it is a non-destructive technique, which employs relatively low energy laser irradiation, and water is only very weakly scattered in the Raman spectrum enabling live cell imaging. In addition, Raman spectroscopy allows species-specific label-free visualisation; chemical contrast may be achieved when imaging a cell in its native environment without fixatives or stains. Combined with the rapid advances in the field of Raman imaging over the last decade, particularly in stimulated Raman spectroscopy (SRS), this technique has the potential to revolutionise our mechanistic understanding of biochemical and medicinal chemistry applications of bioorthogonal reactions. Current approaches to the kinetic analysis of bioorthogonal reactions (including heat flow calorimetry, uv-vis spectroscopy, fluorescence, IR, NMR and MS), have a number of practical shortcomings for intracellular applications. We highlight the advantages offered by Raman microscopy for reaction analysis in the context of both established and emerging bioorthogonal reactions, including the copper(I) catalysed azide alkyne cycloaddition (CuAAC) click reaction and Glaser-Hay coupling.en_UK
Dataset Description (TOC)dc.description.tableofcontentsExcel spreadsheets for the primary data files and RMSE calculations are grouped by Figure #.en_UK
Languagedc.language.isoengen_UK
Publisherdc.publisherUniversity of Edinburgh. School of Chemistry. Hulme Research Groupen_UK
Relation (Is Referenced By)dc.relation.isreferencedbyhttps://www.doi.org/10.1039/C9FD00057Gen_UK
Rightsdc.rightsCreative Commons Attribution 4.0 International Public Licenseen
Subjectdc.subjectRaman microscopyen_UK
Subjectdc.subjectCuAAC reactionen_UK
Subjectdc.subjectbioorthogonal reactionsen_UK
Subjectdc.subjectGlaser-Hay reactionen_UK
Subjectdc.subjectalkynesen_UK
Subjectdc.subjectkinetic analysisen_UK
Subject Classificationdc.subject.classificationPhysical Sciences::Organic Chemistryen_UK
Titledc.titleKinetic analysis of bioorthogonal reaction mechanisms using Raman microscopyen_UK
Typedc.typedataseten_UK

Download All
zip file MD5 Checksum: b826d8b580a6b7f268ecd0ae591d822d

Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record