Show simple item record

Depositordc.contributorMartinez, Rodrigo
Funderdc.contributor.otherEPSRC - Engineering and Physical Sciences Research Councilen_UK
Funderdc.contributor.otherConsejo Nacional de Ciencie y Tecnologia (CONACYT)en_UK
Data Creatordc.creatorMartinez, Rodrigo
Data Creatordc.creatorPayne, Gregory
Data Creatordc.creatorBruce, Tom
Date Accessioneddc.date.accessioned2018-06-12T13:08:09Z
Date Availabledc.date.available2018-08-01T04:15:51Z
Citationdc.identifier.citationMartinez, Rodrigo; Payne, Gregory; Bruce, Tom. (2018). The effects of oblique waves and currents on the loadings and performance of tidal turbines, [dataset]. University of Edinburgh. School of Engineering. Institute for Energy Systems. https://doi.org/10.7488/ds/2360.en
Persistent Identifierdc.identifier.urihttp://hdl.handle.net/10283/3098
Persistent Identifierdc.identifier.urihttps://doi.org/10.7488/ds/2360
Dataset Description (abstract)dc.description.abstractTidal energy exploitation is at an early deployment stage and costs need to be reduced to improve the long term economic viability of the sector. High costs of tidal turbines are, in part, the result of load uncertainties, which lead to the use of high factors of safety in the design to ensure survival. One of the most important causes of uncertainty is hydrodynamic loadings. To date, most of the scaled model experiments with horizontal axis turbines investigating this issue have been carried out with collinear wave and current directions. To the authors’ knowledge, the work presented herein is the first experimental investigation of a horizontal axis turbine model subjected to combined oblique waves and current. Turbine performance and loading are measured for a 1:15 scale model tested in the FloWave circular, combined wave and current basin at the University of Edinburgh (UK). Three different flow directions were tested and each of them were also combined with regular waves in three different directions non-collinear with the flow. Fifteen physical quantities were measured including flow velocity, rotor and foundation loads and turbine speed. Characterisation of loads and turbine performance in those oblique current and wave conditions are presented. Waves affect means and standard deviation of rotor power and thrust, but off-axis waves are associated with lower thrust loads than head-on waves. Compared to current only, rotor torque and thrust standard deviations are higher in the presence of waves and almost twice as high when the wave crest is parallel to the rotor plan.en_UK
Languagedc.language.isoengen_UK
Publisherdc.publisherUniversity of Edinburgh. School of Engineering. Institute for Energy Systemsen_UK
Relation (Is Referenced By)dc.relation.isreferencedbyMartinez et al. (Accepted manuscript)en_UK
Rightsdc.rightsCreative Commons Attribution 4.0 International Public Licenseen
Subjectdc.subjectTidal energyen_UK
Subjectdc.subjectPhysical modellingen_UK
Subjectdc.subjectTank testingen_UK
Subjectdc.subjectPerformance characterisationen_UK
Subjectdc.subjectWave-current interactionen_UK
Subjectdc.subjectHorizontal axis tidal turbineen_UK
Subject Classificationdc.subject.classificationEngineeringen_UK
Titledc.titleThe effects of oblique waves and currents on the loadings and performance of tidal turbinesen_UK
Typedc.typedataseten_UK
Show Tombstoneds.withdrawn.showtombstonetrue

No download currently available for this item.

This item appears in the following Collection(s)

Show simple item record